ClibPDF -

a2 United States Patent
Eslick et al.

US006675289B1

US 6,675,289 Bl
Jan. 6, 2004

(10) Patent No.:
5) Date of Patent:

(54) SYSTEM AND METHOD FOR EXECUTING
HYBRIDIZED CODE ON A DYNAMICALLY
CONFIGURABLE HARDWARE
ENVIRONMENT
(75) Inventors: Ian S. Eslick, Mountain View, CA
(US);, Mark Williams, San Jose, CA
(US); Robert S. French, Sunnyvale,
CA (US)

(73) Assignee: Broadcom Corporation, Irvine, CA
(Us)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 658 days.

(21) Appl. No.: 09/608,860

(22) Filed: Jun. 30, 2000

(51) Int. CL7 .o GO6F 9/445

(52) US.CL ... 712/226; 712/15; 709/221

(58) Field of Searchccceeenenn. 712/226, 11, 15,

712/16, 37, 709/220, 221

(56) References Cited

U.S. PATENT DOCUMENTS

4967340 A 10/1990 Dawes

5,388,215 A * 2/1995 Baker et al. 709/229
5,742,180 A 4/1998 DeHon et al.

5,778,226 A * 7/1998 Adams et al. 709/311
5015123 A 6/1999 Mirsky

5,956,518 A 9/1999 DeHon et al.

6,075,939 A * 6/2000 Bunnell et al. 717/107
6,108,760 A 8/2000 Mirsky

6,122,719 A 9/2000 Mirsky

6,351,846 B1 * 2/2002 Collin et al. 717/125

OTHER PUBLICATIONS

“Smart Compilers Puncture Code Bloat,” Brown, Electronic
Engineering Times, Oct. 9, 1995 (pp. 38 & 42).

1304

“A High—Performance Miicroarchitecture with Hardware—
Programmable Functional Units,” Razdan et al., Micro—27
Proceedings of the 27th Annual International Symposium on
Microarchitecture, Nov. 30-Dec. 2, 1994 (pp. 172-180).
“Programmable Active Memories: Reconfigurable Systems
Come of Age,” IEEE Transactions on VLSI Systems, 1995
(pp. 1-15).

“Pilkington Preps Reconfigurable Video DSP,” Clark, EE
TImes, week of Jul. 31, 1995.

“Coarse—Grain Reconfigurable Computing,” Mirsky, Ethan
A., Thesis submitted at the Massachusetts Institute of Tech-
nology, Jun. 1996.

“SOP: Adaptive Massively Parallel System,” by Tsukasa
Yamauchi et al., NEC Research & Development, vol. 37,
No. 3, Jul. 1996 (pp. 382-393.

* cited by examiner

Primary Examiner—Eric Coleman
(74) Attorney, Agent, or Firm—Christie, Parker & Hale,
LLP

(57) ABSTRACT

A system and method for executing previously created run
time executables in a configurable processing element array
is disclosed. In one embodiment, this system and method
begins by identifying at least one subset of program code.
The method may then generate at least one set of configu-
ration memory contexts that replaces each of the at least one
subsets of program code, the at least one set of configuration
memory contexts emulating the at least one subset of
program code. The method may then manipulate the the at
least one set of multiple context processing elements using
the at least one set of configuration memory contexts. The
method may then execute the plurality of threads of program
code using the at least one set of multiple context processing
elements.

32 Claims, 19 Drawing Sheets

1316

1302
MAIN RUN TIME
PROCESSOR ‘l KERNAL

/-1300

1306 | 1308 1314
PROCESSOR | ppa 1 ARGUMENT BUS 1318
DATA I]
MEMORY 1332 1342
13304 OMA| 1340+ | DA
CONTROL
BUS ACCEL. | e+ | ACCEL.
1310 - tDMA DMA DMA
1344
CONFIGURATION 1324 1334
MEMORY |DMA ‘ | 5
CONFIGURATION BUS ;5,5

wyvwy.lastio.com

US 6,675,289 Bl

Sheet 1 of 19

Jan. 6, 2004

U.S. Patent

OLl—~[180d | 180d | 13404 | 1¥0d | 140d
20!l 0/ 0/ 0/I 0/ 0/
1404 140d
0/ 0/l
140d 1404
0/l — 0/
901
Ewa Ewa
0/ 0/
4300030
NOILONALSNI A -—AY
1404 318VENOIINOD 1404
0/l 0/1
140d 140d
0/ 0/
7 7
ININNYH OO - ¥01
Ema Ema Ema Ewa Emn_
o/l 0/ 0/ 0/ 0/
- oLl
AN

wavwy.lastio.com

ClibPD

US 6,675,289 Bl

Sheet 2 of 19

Jan. 6, 2004

U.S. Patent

-
1N0 A¥YYD « NI AMAYO
21907 21907
[140d NOILONNS AYON3N |- 1081INOD 3 ~O4INOD | [§0d NOILONNS V]
r 1N0™D P
AR4 _ N N A%/
12 NI_8 N vee
T -
NN 052 822
1404789 140d™Y
oJ¥4 ~
- q4av Vv V 140d YJOMLIN |
(8 1y0d iogmfi.ﬁlﬁlv 4V~ 9 %2019 %
r AHOWIN 277
vee 3JQON IM
v1va |
_
922 |
8l ™
iiiiiii —
G IIA

-wavwlastio.com

ClibPD

US 6,675,289 Bl

Sheet 3 of 19

Jan. 6, 2004

U.S. Patent

T0YINOD WS4

+{? 140d INILVOTY [—@————+f (o T 0l W @€ 1¥0d INIVOLY I+
\ A 1 A /
90¢ rs»|J_ "lln..L 90¢
] i
&——{2 1¥0d N0 o HIOMLN H! 180 INYOY +—g
7 R | S
90¢ _ | 90¢
|
SRHOMLIN € 13T ! | MIOMIIN € 1337
MYOMIAN ¢ T3ATD | _ MYOMLIN ¢ 13A9)
FYOMIAN | 13A9 | | MYOMIIN | T3AN
1404 NOILONAS | | L] L 1904 Notonn3
AYONIN 1B ! N
r’ | R I | ~
90§ (s -) 'y 90§
(1=t |
_lllllL [rlllJ
Y ol ¥
J o 1¥0d o mod |
VIY0/SSIOQY 8 AJONIN V10/SSA0Y v
r N
908 *Nom\ i . 90¢
E91A

WAL lastio.com

ClibPD

US 6,675,289 Bl

Sheet 4 of 19

Jan. 6, 2004

U.S. Patent

SHJOMLIN
¢ ONY | 13A9]

SINN YITIONINGD
nJg zo_z%,u:zoo BO9—" 1N0-Rauv)
ﬂ ylo— Fe Ni-Addy) TOYINOD TOUINOY
TO4INOD —> ¥31S31 lq
$140d podd—e] NWE L oy noamvd | T0MINOD
NdNI N48 104INO)
/(r JIVNLYS ~09 7 Qa\m_.:o
Z19 019 ~ ANV
SHHOMLIN
¢ NV | 13A31 4 &L 4 ﬁ V_ di

809 909—" NN HIHLINA “#09

v oId

WAL lastio.com

ClibPD

U.S. Patent Jan. 6, 2004 Sheet 5 of 19 US 6,675,289 B1

+——508
502

FSM

FIG.5

CTRL—
CTRL—™

o

ClibPD waww.lastio.com

]
)
=2}
S
> NEN

m VL9 WILSAS
v L I
5

WALSAS ML SINVLSNOO "30000¥DI

NOY 504 T19¥1 AW || SNOILYANIIINGD VIO
%@\ a a /N@@
ydvl
&
- 099" !
e SONIdJVI
3 JUYMOYYH IRVA
= 359~ }
[sNaisag NNY 1S3L WOUJ S3714

r INYMOUYH v | VLVO 31403 103rg0 3LY3YO
< " 959 f cc9— | z.9—]
& 1
S SNOILD3S (IYNOILAO) &
S _ 3000 1INYIA) : 43 NdNOD

2 =

2 “ 759~/ Qv IHYN0 4O DL9
= | TINYIN S IENGIA 7 y3IHYIN0

_ ¢s9 069
- L e ———— {3000 30¥N0S 9
=
=]
5 9911
=%
3
-

-wavwlastio.com

ClibPD

US 6,675,289 Bl

Sheet 7 of 19

Jan. 6, 2004

U.S. Patent

oon;///

3OVUOLS
3000040IN
NOLLYHNOIANOD
OlL—, BOL— 90L— N
1INEI
g | tnvg | ong | 3w 0L
NNY
I L g ¥0SS3I00¥d | v H0SSIN0Nd f—- I
— , Syee
cet oze—" | T o,
4
JOVHOLS
3avL | 70
0g L —
gz.—"
Vi OId

-wavwlastio.com

ClibPD

US 6,675,289 Bl

Sheet 8 of 19

Jan. 6, 2004

U.S. Patent

omm)f

09— 85—~ 95L—

¢ 480 | | 450

0 d5d

REN=E)

INL [PSL

NNd

[}

= g JOSS300dd

v J0SS3004dd

3

)

3OVHOLS
vivd

08L—
g/L—"

L7914

/{immh

0/1

N/

wvw.lastio.com

ClibPD

US 6,675,289 Bl

Sheet 9 of 19

Jan. 6, 2004

U.S. Patent

NOILVNIGYO0D SWHO4d3d e
NOILDOIL30 NOILITINOD SWHO4d3d »
INIGVOT ANNOAIHOVE SWHOJH3d *

olg— 304N0S

YHOMLIN NOILYHNIIINOD
808— YNA S1INS3Y
908— VWA SLNINNOYY LY
y08—| VWO 300200
Z208—4 VWO NOILVINIIANOD
yor—"

8914

-wavwlastio.com

ClibPD

U.S. Patent Jan. 6, 2004 Sheet 10 of 19 US 6,675,289 B1

Q
©
(o))
S o~
>» il
o
@
Q
L
[
o}
(@)
© o ¥ o ® o0 8 g Xr3
D O OO 3 OO o OO O O o O
-
o
N
~

ClibPDF - wyww.laslio.com

U.S. Patent Jan. 6, 2004 Sheet 11 of 19 US 6,675,289 B1

A] (T

)
)|

NN
N
N
AN
M
NN
DN

DTS
|

1
Y

93922 of 9f29628/ 9}7)9032/ 9:9436/

)
7\

FIG.9B

7\

JEY

|
Y

~o1s/ 920/

7
/
|
|

9'76-—:> 1
2\

[/

970~

o
W 3%
7z

900
CODE

BIN O S
BIN 1 T
BIN 38

PROCESSOR
A

ClibPDF - wyww.laslio.com

US 6,675,289 B1

m Z Nig

[\ o

b 196

m 0 NIg

\-936

Sheet 12 of 19

Jan. 6, 2004

U.S. Patent

I \\\\M % \\/ 1 \
§ % o \gmwww

ClibPDF - wyww.laslio.com

US 6,675,289 Bl

Sheet 13 of 19

Jan. 6, 2004

U.S. Patent

rOLL——1"
#NIB L o o o ¥ ¢l
0 LNVIYYA—— _
AMOWIN ¢
HIMOT ¢
Z0LL——1" *
90/ .
L INVINVA=T .
AHOW3N
43ddn
0 NIg
N
NI #NOIS3A |

INVIYVA

Av

01914

-wavwlastio.com

ClibPD

U.S. Patent Jan. 6, 2004 Sheet 14 of 19 US 6,675,289 B1

EMORY
1212

/—1202

EJ

<
N R :’-__ O
z AR
8] o l

N N
™~ >
. — o
Q z ¢ o C§)
~ s 5
S3 ‘\ =

© 5

= M~

o \\

©

S

~

ClibPD waww.lastio.com

US 6,675,289 Bl

Sheet 15 of 19

Jan. 6, 2004

U.S. Patent

BEE1N sng NowvanoLNod
) VANG| AHOW3W
NOILY&N91INO)
vZeL
AAY F/ 1A% 7/ Z N\ Nﬁmﬁ‘\ C
0l
YO YO YNa
1300V |ese {300V | | 300V sng
TO4LNOD
malNoreL |ywa|Noset|vna| oze
N-ZPEL —zeel | ~zzTel FEGITEN
(onal ¥1YQ
gicl—" SNG ININNOAY 40SS3008d
b1 1—o 8051 \90¢
l‘\\\\ v NY I 405530044
00S L INIL NNY NIV A
oigi— vogi—' Nom_q\\
&1914

WA lastio.com

ClibPD

US 6,675,289 Bl

Sheet 16 of 19

Jan. 6,2004

U.S. Patent

¢ SNG LNIANNOYY \w:l " TIOWAN
m viv(Q
\ H40SS3004d
YWO Feyvi[vywa F8cviL| VYW 82vL|80T!L wovT\
JHOVD QF9v v L{3HIVD OF9¢ Y L|3HIVD A-9Chl
[asq_Jovrvi[450 josvi[dsg J-oewt
IHOVD by L[3HOVD 1P Ev L|3HOVD P iyl
vW({ vl VNG FCETl Hx..:zo —C vl
1 A8CvL | | ;
Al 308 NOIDNALSNI wna| AN
IYNYE3A || ¥0SS300ud
\\ JWIL NNy NIVIN
vt @:l\\ ¢oi\\

v 1old

vy lastio.com

ClibPD

US 6,675,289 Bl

Sheet 17 of 19

Jan. 6, 2004

U.S. Patent

(09, d04 LIVM

0191—"

AYOWIN ¥OSSIV04d
WOY4 SININNOYY VAQ

8091

i

AYOWIN J0SS300dd
01 SININNOYY VWG

9091—"

i

Qv01430 SININNOYY
¥04 Livm 310

y091—"

3

CLINML, LXAN
Qv01/34N91INOD

NOILYHNSIINOD/3000 3LND3X3

zog1—"

3

91914

S3A

& AQV3Y
S1INS3Y

ON

0IG1
QY3IYHLENS
IX3IN L2373
g051—"]
ALY 0L
LINV4 ON3S
90G1—" ,
SININN9YY
319W3ISSY
051~ ,
QY 3IYHLANS
310033
zos1—" ,
Gl IoId

WAL lastio.com

ClibPD

US 6,675,289 Bl

Sheet 18 of 19

Jan. 6, 2004

U.S. Patent

YNO 1X3

N 14VLS

9z/1—" _

3

ALVIS INJAIHONI

vmmrl\\ SIA

4

0/1 J1ONVH

0gLlL

S3A

:
INIONId 0/

Sl

S

VIO 1Sl 18VIS

AVA

:

NIg 103735

oLLL—

h

J18vl Ol

LINA 0QV

041"

A

AYON3IN JIINOD NI
NOILYENIIINGD
JIVMOYYH dN A001

90,1~

3

1S3N038 139

0L oy

6
ALdW3 3N3N0
1S3N03Y

ol

L OId

WAL lastio.com

ClibPD

US 6,675,289 Bl

Sheet 19 of 19

Jan. 6, 2004

U.S. Patent

—0¢8|

ANOQ | ONION3d

LINN

YAJ

NIg

3LvlS

al
JIVMOAVH

0181

\-g081

\-9081

&1°91d

N

\-z08l

//loowr

-wavwlastio.com

ClibPD

ClibPDF -

US 6,675,289 B1

1

SYSTEM AND METHOD FOR EXECUTING
HYBRIDIZED CODE ON A DYNAMICALLY
CONFIGURABLE HARDWARE
ENVIRONMENT

FIELD OF THE INVENTION

The present invention relates to the field of software run
time operating systems. In particular, the present invention
relates to a system and method for executing software code
in a dynamically configurable hardware environment.

BACKGROUND OF THE INVENTION

The software which executes upon processors is a
sequence of digital words known as machine code. This
machine code is understandable by the hardware of the
processors. However, programmers typically write pro-
grams in a higher-level language which is much easier for
humans to comprehend. The program listings in this higher-
level language are called source code. In order to convert the
human-readable source code into machine-readable machine
code, several special software tools are known in the art.
These software tools are compilers, linkers, assemblers, and
loaders.

Existing compilers, linkers, and assemblers prepare
source code well in advance of their being executed upon
processors. These software tools expect that the hardware
upon which the resulting machine code executes, including
processors, will be in a predetermined and fixed configura-
tion for the duration of the software execution. If a flexible
processing methodology were invented, then the existing
software tools would be inadequate to support processors
and other hardware lacking a predetermined and fixed
configuration.

Furthermore, once the software was prepared using
replacements for these software tools, the existing run time
operating systems would not be sufficient to execute the
resulting software in a flexible processing environment.

SUMMARY OF THE INVENTION

A method and apparatus for processing a plurality of
threads of program code is disclosed. In one embodiment,
the method begins by retrieving a first kernel code segment.
Then the method may identify a first set of configuration
information required to execute the first kernel code seg-
ment. The method then may build an entry in a kernel code
execution table utilizing the first kernel code segment and
the first configuration information. The method may then
select a first accelerator set configured to execute said first
kernel code segment; and initiate a direct memory access
transfer to the first accelerator set.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, aspects, and advantages of the present
invention will become more fully apparent from the follow-
ing detailed description, appended claims, and accompany-
ing drawings in which:

FIG. 1 is the overall chip architecture of one embodiment.
This chip architecture comprises many highly integrated
components.

FIG. 2 is an eight bit multiple context processing element
(MCPE) core of one embodiment of the present invention.

FIG. 3 is a data flow diagram of the MCPE of one
embodiment.

wyvwy.lastio.com

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 shows the major components of the MCPE control
logic structure of one embodiment.

FIG. 5 is the finite state machine (FSM) of the MCPE
configuration controller of one embodiment.

FIG. 6 is a data flow system diagram of the preparation of
run time systems tables by the temporal automatic place and
route (TAPR) of one embodiment.

FIG. 7A s a block diagram of exemplary MCPEs, accord-
ing to one embodiment.

FIG. 7B is a block diagram of exemplary digital signal
processors (DSP), according to one embodiment.

FIG. 8 is a diagram of the contents of an exemplary run
time kernel (RTK), according to one embodiment.

FIG. 9A is a process chart showing the mapping of an
exemplary single threaded process into kernel segments,
according to one embodiment.

FIG. 9B is a process chart showing the allocation of the
kernel segments of FIG. 9A into multiple bins.

FIG. 9C is a process chart showing the allocation of the
kernel segments of two processes into multiple bins.

FIG. 10 is an exemplary TAPR table, according to one
embodiment.

FIG. 11 is a diagram of a first exemplary variant of a
design, according to one embodiment.

FIG. 12 is a diagram of a second exemplary variant of a
design, according to another embodiment.

FIG. 13 is a diagram of an exemplary logical MCPE
architecture, according to one embodiment.

FIG. 14 is a diagram of an exemplary logical processor-
based architecture, according to one embodiment.

FIG. 15 is a flowchart of processor functions, according to
one embodiment.

FIG. 16 is a flowchart of the hardware accelerator
behavior, according to one embodiment.

FIG. 17 is a flowchart for a RTK processor, according to
one embodiment.

FIG. 18 is a table to support the operation of the RTK
processor, according to one embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having an ordinary skill in the art
may be able to practice the invention without these specific
details. In some instances, well-known circuits, structures,
and techniques have not been shown in detail to not unnec-
essarily obscure the present invention.

FIG. 1 is the overall chip architecture of one embodiment.
This chip architecture comprises many highly integrated
components. While prior art chip architectures fix resources
at fabrication time, specifically instruction source and
distribution, the chip architecture of the present invention is
flexible. This architecture uses flexible instruction distribu-
tion that allows position independent configuration and
control of a number of multiple context processing elements
(MCPEs) resulting in superior performance provided by the
MCPEs. The flexible architecture of the present invention
uses local and global control to provide selective configu-
ration and control of each MCPE in an array; the selective
configuration and control occurs concurrently with present
function execution in the MCPEs.

The chip of one embodiment of the present invention is
composed of, but not limited to, a 10x10 array of identical

ClibPDF -

US 6,675,289 B1

3

eight-bit functional units, or MCPEs 102, which are con-
nected through a reconfigurable interconnect network. The
MCPEs 102 serve as building blocks out of which a wide
variety of computing structures may be created. The array
size may vary between 2x2 MCPEs and 16x16 MCPEs, or
even more depending upon the allowable die area and the
desired performance. A perimeter network ring, or a ring of
network wires and switches that surrounds the core array,
provides the interconnections between the MCPEs and
perimeter functional blocks.

Surrounding the array are several specialized units that
may perform functions that are too difficult or expensive to
decompose into the array. These specialized units may be
coupled to the array using selected MCPEs from the array.
These specialized units can include large memory blocks
called configurable memory blocks 104. In one embodiment
these configurable memory blocks 104 comprise eight
blocks, two per side, of 4 kilobyte memory blocks. Other
specialized units include at least one configurable instruction
decoder 106.

Furthermore, the perimeter area holds the various inter-
faces that the chip of one embodiment uses to communicate
with the outside world including:

input/output (I/O) ports; a peripheral component interface
(PCI) controller, which may be a standard 32-bit PCI inter-
face; one or more synchronous burst static random access
memory (SRAM) controllers; a programming controller that
is the boot-up and master control block for the configuration
network; a master clock input and phase-locked loop (PLL)
control/configuration; a Joint Test Action Group (JTAG) test
access port connected to all the serial scan chains on the
chip; and I/O pins that are the actual pins that connect to the
outside world.

Two concepts which will be used to a great extent in the
following description are context and configuration.
Generally, “context” refers to the definition of what hard-
ware registers in the hardware perform which function at a
given point in time. In different contexts, the hardware may
perform differently. A bit or bits in the registers may define
which definition is currently active. Similarly, “configura-
tion” usually refers to the software bits that command the
hardware to enter into a particular context. This set of
software bits may reside in a register and define the hard-
ware’s behavior when a particular context is set.

FIG. 2 is an eight bit MCPE core of one embodiment of
the present invention. Primarily the MCPE core comprises
memory block 210 and basic ALU core 220. The main
memory block 210 is a 256 word by eight bit wide memory,
which is arranged to be used in either single or dual port
modes. In dual port mode the memory size is reduced to 128
words in order to be able to perform two simultaneous read
operations without increasing the read latency of the
memory. Network port A 222, network port B 224, ALLU
function-port 232, control logic 214 and 234, and memory
function port 212 each have configuration memories (not
shown) associated with them. The configuration memories
of these elements are distributed and are coupled to a
Configuration Network Interface (CNI) (not shown) in one
embodiment. These connections may be serial connections
but are not so limited. The CNI couples all configuration
memories associated with network port A 222, network port
B 224, ALU function port 232, control logic 214 and 234,
and memory function port 212 thereby controlling these
configuration memories. The distributed configuration
memory stores configuration words that control the configu-
ration of the interconnections. The configuration memory

wyvwy.lastio.com

10

15

20

35

40

45

50

55

60

65

4

also stores configuration information for the control archi-
tecture. Optionally it can also be a multiple context memory
that receives context selecting signals which have been
broadcast globally and locally from a variety of sources.

FIG. 3 is a data flow diagram of the MCPE of one
embodiment. The structure of each MCPE allows for a great
deal of flexibility when using the MCPEs to create net-
worked processing structures. The major components of the
MCPE include static random access memory (SRAM) main
memory 302, ALU with multiplier and accumulate unit 304,
network ports 306, and control logic 308. The solid lines
mark data flow paths while the dashed lines mark control
paths; all of the lines are one or more bits wide in one
embodiment. There is a great deal of flexibility available
within the MCPE because most of the major components
may serve several different functions depending on the
MCPE configuration.

The MCPE main memory 302 is a group of 256 eight bit
SRAM cells that can operate in one of four modes. It takes
in up to two eight bit addresses from A and B address/data
ports, depending upon the mode of operation. It also takes in
up to four bytes of data, which can be from four floating
ports, the B address/data port, the ALU output, or the high
byte from the multiplier. The main memory 302 outputs up
to four bytes of data. Two of these bytes, memory A and B,
are available to the MCPE’s ALU and can be directly driven
onto the level 2 network. The other two bytes, memory C
and D, are only available to the network. The output of the
memory function port 306 controls the cycle-by-cycle
operation of the memory 302 and the internal MCPE data
paths as well as the operation of some parts of the ALU 304
and the control logic 308. The MCPE main memory may
also be implemented as a static register file in order to save
power.

Each MCPE contains a computational unit 304 comprised
of three semi-independent functional blocks. The three
semi-independent functional blocks comprise an eight bit
wide ALU, an 8x8 to sixteen bit multiplier, and a sixteen bit
accumulator. The ALU block, in one embodiment, performs
logical, shift, arithmetic, and multiplication operations, but
is not so limited. The ALU function port 306 specifies the
cycle-by-cycle operation of the computational unit. The
computational units in orthogonally adjacent MCPEs can be
chained to form wider-word data paths.

The MCPE network ports 306 connect the MCPE network
to the internal MCPE logic (memory, ALU, and control).
There are eight network ports 306 in each MCPE, each
serving a different set of purposes. The eight network ports
306 comprise two address/data ports, two function ports, and
four floating ports. The two address/data ports feed
addresses and data into the MCPE memories and ALU. The
two function ports feed instructions into the MCPE logic.
The four floating ports may serve multiple functions. The
determination of what function they are serving is made by
the configuration of the receivers of their data.

The MCPEs of one embodiment are the building blocks
out of which more complex processing structures may be
created. The structure that joins the MCPE cores into a
complete array in one embodiment is actually a set of several
mesh-like interconnect structures. Each interconnect struc-
ture forms a network, and each network is independent in
that it uses different paths, but the networks do join at the
MCPE input switches. The network structure of one embodi-
ment of the present invention is comprised of a local area
broadcast network (level 1), a switched interconnect net-
work (level 2), a shared bus network (level 3), and a
broadcast, or configuration, network.

ClibPDF -

US 6,675,289 B1

5

FIG. 4 shows the major components of the MCPE control
logic structure of one embodiment. The Control Tester 602
takes the output of the ALU for two bytes from floating ports
604 and 606, plus the left and right carryout bits, and
performs a configurable test on them. The result is one bit
indicating that the comparison matched. This bit is referred
to as the control bit. This Control Tester 602 serves two main
purposes. First, it acts as a programmable condition code
generator testing the ALU output for any condition that the
application needs to test for. Secondly, since these control
bits can be grouped and sent out across the level 2 and 3
networks, this unit can be used to perform a second or later
stage reduction on a set of control bits/data generated by
other MCPE’s.

The level 1 network 608 carries the control bits. The level
1 network 608 consists of direct point-to-point communica-
tions between every MCPE and its 12 nearest neighbors.
Thus, each MCPE will receive 13 control bits (12 neighbors
and it’s own) from the level 1 network. These 13 control bits
are fed into the Control Reduce block 610 and the BFU input
ports 612. The Control Reduce block 610 allows the control
information to rapidly effect neighboring MCPEs. The
MCPE input ports allow the application to send the control
data across the normal network wires so they can cover long
distances. In addition the control bits can be fed into MCPEs
so they can be manipulated as normal data.

The Control Reduce block 610 performs a simple selec-
tion on either the control words coming from the level 1
control network, the level 3 network, or two of the floating
ports. The selection control is part of the MCPE configura-
tion. The Control Reduce block 610 selection results in the
output of five bits. Two of the output bits are fed into the
MCPE configuration controller 614. One output bit is made
available to the level 1 network, and one output bit is made
available to the level 3 network.

The MCPE configuration controller 614 selects on a
cycle-by-cycle basis which context, major or minor, will
control the MCPE’s activities. The controller consists of a
finite state machine (FSM) that is an active controller and
not just a lookup table. The FSM allows a combination of
local and global control over time that changes. This means
that an application may run for a period based on the local
control of the FSM while receiving global control signals
that reconfigure the MCPE, or a block of MCPEs, to perform
different functions during the next clock cycle. The FSM
provides for local configuration and control by locally
maintaining a current configuration context for control of the
MCPE. The FSM provides for global configuration and
control by providing the ability to multiplex and change
between different configuration contexts of the MCPE on
each different clock cycle in response to signals broadcast
over a network. This configuration and control of the MCPE
is powerful because it allows an MCPE to maintain control
during each clock cycle based on a locally maintained
configuration context while providing for concurrent global
on-thefly reconfiguration of each MCPE. This architecture
significantly changes the area impact and characterization of
an MCPE array while increasing the efficiency of the array
without wasting other MCPEs to perform the configuration
and control functions.

FIG. 5 is the FSM 502 of the MCPE configuration
controller of one embodiment. In controlling the functioning
of the MCPE, control information 504 is received by the
FSM 502 in the form of state information from at least one
surrounding MCPE in the networked array. This control
information is in the form of two bits received from the
Control Reduce block of the MCPE control logic structure.

wyvwy.lastio.com

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, the FSM 502 also has three state bits
that directly control the major and minor configuration
contexts for the particular MCPE. The FSM 502 maintains
the data of the current MCPE configuration by using a
feedback path 506 to feed back the current configuration
state of the MCPE of the most recent clock cycle. The
feedback path 506 is not limited to a single path. The FSM
502 selects one of the available configuration memory
contexts for use by the corresponding MCPE during the next
clock cycle in response to the received state information
from the surrounding MCPEs and the current configuration
data. This selection is output from the FSM 502 in the form
of a configuration control signal 508. The selection of a
configuration memory context for use during the next clock
cycle occurs, in one embodiment, during the execution of
the configuration memory context selected for the current
clock cycle.

FIG. 6 is a data flow system diagram of the preparation of
run time systems tables by the temporal automatic place and
route (TAPR) of one embodiment. In step 650 an application
program in source code is selected. In the FIG. 6 embodi-
ment the application program is written in a procedural
oriented language, C, but in other embodiments the appli-
cation program could be written in another procedural
oriented language, in an object oriented language, or in a
dataflow language.

The source code of step 650 is examined in decision step
652. Portions of the source code are separated into overhead
code and kernel code sections. Kernel code sections are
defined as those routines in the source code which may be
advantageously executed in a hardware accelerator. Over-
head code is defined as the remainder of the source code
after all the kernel code sections are identified and removed.

In one embodiment, the separation of step 652 is per-
formed by a software profiler. The software profiler breaks
the source code into functions. In one embodiment, the
complete source code is compiled and then executed with a
representative set of test data. The profiler monitors the
timing of the execution, and then based upon this monitoring
determines the function or functions whose execution con-
sumes a significant portion of execution time. Profiler data
from this test run may be sent to the decision step 652. The
profiler identifies these functions as kernel code sections.

In an alternate embodiment, the profiler examines the
code of the functions and then identifies a small number of
functions that are anticipated to consume a large portion of
the execution run-time of the source code. These functions
may be identified by attributes such as having a regular
structure, having intensive mathematical operations, having
a repeated or looped structure, and having a limited number
of inputs and outputs. Attributes which argue against the
function being identified as kernel sections include numer-
ous branches and overly complex control code.

In an alternate embodiment, the compiler examines the
code of the functions to determine the size of arrays tra-
versed and the number of variables that are live during the
execution of a particular block or function. Code that has
less total memory used than that in the hardware accelerators
and associated memories are classified as kernel code sec-
tions. The compiler may use well-understood optimization
methods such as constant propagation, loop induction,
in-lining and intra-procedural value range analysis to infer
this information from the source code.

Those functions that are identified as kernel code section
by one of the above embodiments of profiler, are then
labeled, in step 654, as kernel code sections. The remainder

ClibPDF -

US 6,675,289 B1

7

of the source code is labeled as overhead code. In alternate
embodiments, the separation of step 652 may be performed
manually by a programmer.

In step 656, the FIG. 6 process creates hardware designs
for implementing the kernel code sections of step 654. These
designs are the executable code derived from the source
code of the kernel code sections. Additionally, the designs
contain any necessary microcode or other fixed-constant
values required in order to run the executable code on the
target hardware. The designs are not compiled in the tradi-
tional sense. Instead they are created by the process of step
656 which allows for several embodiments.

In one embodiment, the source code of the kernel code
section is compiled automatically by one of several com-
pilers corresponding to the available hardware accelerators.
In an alternate embodiment, a programmer may manually
realize the executable code from the source code of the
kernel code sections, as shown by the dashed line from step
656 to step 650. In a third embodiment the source code of
the kernel code sections is compiled automatically for
execution on both the processors and the hardware
accelerators, and both versions are loaded into the resulting
binary. In a fourth embodiment, a hardware accelerator is
synthesized into a custom hardware accelerator description.

In step 658 the hardware designs of step 656 are mapped
to all available target hardware. The target hardware may be
a processor, an MCPE, or a defined set of MCPEs called a
bin. A bin may contain any number of MCPEs from one to
the maximum number of MCPEs on a given integrated
circuit. However, in one embodiment a quantity of 12
MCPEs per bin is used. The MCPEs in each bin may be
geometrically neighboring MCPEs, or the MCPEs may be
distributed across the integrated circuit. However, in one
embodiment the MCPEs of each bin are geometrically
neighboring.

In the temporal automatic place and route (TAPR) of step
660, the microcode created in step 656 may be segmented
into differing contex-dependent portions. For example, a
given microcode design may be capable of loading and
executing in either lower memory or upper memory of a
given bin. The TAPR of step 660 may perform the segmen-
tation in several different ways depending upon the micro-
code. If, for example, the microcode is flat, then the micro-
code may only be loaded into memory in one manner. Here
no segmentation is possible. Without segmentation one
microcode may not be background loaded onto a bin’s
memory. The bin must be stalled and the microcode loaded
off-line.

In another example, memory is a resource which may be
controlled by the configuration. It is possible for the TAPR
of step 660 to segment microcode into portions, correspond-
ing to differing variants, which correspond to differing
contexts. For example, call one segmented microcode por-
tion context 2 and another one context 3. Due to the software
separation of the memory of the bin it would be possible to
place the context 2 and context 3 portions into lower
memory and upper memory, respectively. This allows back-
ground loading of one portion while another portion is
executing.

The TAPR of step 660 supports two subsequent steps in
the preparation of the source code for execution. In step 664,
a table is prepared for subsequent use by the run time
system. In one embodiment, the table of step 664 contains all
of the three-tuples corresponding to allowable combinations
of designs (from step 656), bins, and variants. A variant of
a design or a bin is any differing implementation where the

wyvwy.lastio.com

10

15

20

25

30

35

40

45

50

55

60

65

8

functional inputs and the outputs are identical when viewed
from outside. The variants of step 664 may be variants of
memory separation, such as the separation of memory into
upper and lower memory as discussed above. Other variants
may include differing geometric layouts of MCPEs within a
bin, causing differing amounts of clock delays being intro-
duced into the microcodes, and also whether or not the
MCPEs within a bin are overlapping. In each case a variant
performs a function whose inputs and outputs are identical
outside of the function. The entries in the table of step 664
point to executable binaries, each of which may each be
taken and executed without further processing at run time.
The table of step 664 is a set of all alternative execution
methods available to the run time system for a given kernel
section.

The other step supported by the TAPR of step 660 is the
creation of configurations, microcodes, and constants of step
662. These are the executable binaries which are pointed to
by the entries in the table of step 664.

Returning now to decision step 652, the portions of the
source code which were previously deemed overhead are
sent to a traditional compiler 670 for compilation of object
code to be executed on a traditional processor. Alternately,
the user may hand code the source program into the assem-
bly language of the target processor. The overhead C code
may also be nothing more than calls to kernel sections. The
object code is used to create object code files at step 672.

Finally, the object code files of step 672, the
configurations, microcode, and constants of step 662, and
table of step 664 are placed together in a format usable by
the run time system by the system linker of step 674.

Note that the instructions for the process of FIG. 6 may be
described in software contained in a machine-readable
medium. A machine-readable medium includes any mecha-
nism for storing or transmitting information in a form
readable by a machine (e.g. a computer). For example, a
machine-readable medium includes read only memory
(ROM); random access memory (RAM); magnetic disk
storage media; optical storage media; flash memory devices;
and electrical, optical, acoustical, or other form of propa-
gated signals (e.g. carrier waves, infrared signals, digital
signals, etc.).

FIG. 7A is a block diagram of exemplary MCPEs, accord-
ing to one embodiment. Chip architecture 700 includes
processing elements processor A 702, processor B 720, bin
0706, bin 1 708, and bin 2 710. In the FIG. 7A embodiment,
the function of hardware accelerator may be assigned to the
MCPEgs, either individually or grouped into bins. A run-time
kernel (RTK) 704 apportions the executable software among
these processing elements at the time of execution. In the
FIG. 7A embodiment, processor A 702 or processor B 720
may execute the overhead code identified in step 652 and
created as object files in step 672 of the FIG. 6 process. Bin
0706, bin 1 708, and bin 2 710 may execute the kernel code
identified in step 652.

Each processing element processor A 702 and processor B
720 is supplied with an instruction port, instruction port 724
and instruction port 722, respectively, for fetching instruc-
tions for execution of overhead code.

Bin 0 706, bin 1 708, and bin 2 710 contain several
MCPEs. In one embodiment, each bin contains 12 MCPEs.
In alternate embodiments, the bins could contain other
numbers of MCPEs, and each bin could contain a different
number of MCPEs than the other bins.

In the FIG. 7A embodiment, bin 0 706, bin 1 708, and bin
2 710 do not share any MCPEs, and are therefore called

ClibPDF -

US 6,675,289 B1

9
non-overlapping bins. In other embodiments, bins may share
MCPEs. Bins which share MCPEs are called overlapping
bins.

RTK 704 is a specialized microprocessor for controlling
the configuration of chip architecture 700 and controlling the
loading and execution of software in bin 0 706, bin 1 708,
and bin 2 710. In one embodiment, RTK 704 may move data
from data storage 728 and configuration microcode from
configuration microcode storage 726 into bin 0 706, bin 1
708, and bin 2 710. in accordance with the table 730 stored
in a portion of data storage 728. In alternate embodiments,
RTK 704 may move data from data storage 728, without
moving any configuration microcode from configuration
microcode storage 726. Table 730 is comparable to that table
created in step 664 discussed in connection with FIG. 6
above.

Paragraph #2A:

The RTK may also move data to and from IO port NNN

and IO port MMM into the data memory 728.
[If I didn’t comment earlier, the RTK does not move data
to processor A or processor B—page 19 line 2]

FIG. 7B is a block diagram of exemplary digital signal
processors (DSP), according to one embodiment. Chip
architecture 750 includes processing elements processor A
752, processor B 770, DSP 0 756, DSP 1 758, and DSP 2
760. In the FIG. 7B embodiment, the function of hardware
accelerator may be assigned to the DSPs. In other
embodiments, DSP 0 756, DSP 1 758, and DSP 2 760 may
be replaced by other forms of processing cores. A run-time
kernel (RTK) 754 apportions the executable software among
these processing elements at the time of execution.

In the FIG. 7B embodiment, processor A 752 or processor
B 770 may execute the overhead code identified in step 652
and created as object files in step 672 of the FIG. 6 process.
DSP 0 756, DSP 1 758, and DSP 2 760 may execute the
kernel code identified in step 652. Each processing element
processor A 702 and processor B 720 is supplied with an
instruction port, instruction port 724 and instruction port
722, respectively, for fetching instructions for execution of
overhead code.

One difference between the FIG. 7A and FIG. 7B embodi-
ments is that the FIG. 7B embodiment lacks an equivalent to
the configuration microcode storage 726 of FIG. 7A. No
configuration microcode is required as the DSPs of FIG. 7B
have a fixed instruction set (microcode) architecture.

RTK 754 is a specialized microprocessor for controlling
the configuration of chip architecture 750 and controlling the
loading and execution of software in DSP 0 756, DSP 1 758,
and DSP 2 760. In one embodiment, RTK 754 may move
data from data storage 778 into DSP 0 756, DSP 1 758, and
DSP 2 760 in accordance with the table 780 stored in a
portion of data storage 778. Table 780 is comparable to that
table created in step 664 discussed in connection with FIG.
6 above.

FIG. 8 is a diagram of the contents of an exemplary run
time kernel (RTK) 704, according to one embodiment. RTK
704 contains several functions in microcontroller form. In
one embodiment, these functions include configuration
direct memory access (DMA) 802, microcode DMA 804,
arguments DMA 806, results DMA 808, and configuration
network source 810. RTK 704 utilizes these functions to
manage the loading and execution of kernel code and
overhead code on chip architecture 700. Configuration DMA
802, microcode DMA 804, arguments DMA 806, and results
DMA 808 ecach comprise a simple hardware engine for
reading from one memory and writing to another.

Configuration DMA 802 writes configuration data created
by the TAPR 660 in step 622 of the FIG. 6 process. This

wyvwy.lastio.com

10

15

20

25

30

35

40

45

50

55

60

65

10

configuration data configures a bin to implement the behav-
ior of the kernel code section determined in the table-making
step 664 of FIG. 6. The configuration data transfers are
under the control of RTK 704 and the configuration data
itself is entered in table 730. Configuration data is
unchanged over the execution of the hardware accelerator.

Microcode DMA 804 writes microcode data for each
configuration into the bins. This microcode further config-
ures the MCPEs with instruction data that allows the func-
tion of the hardware accelerator to be changed on a cycleby-
cycle basis while the hardware accelerator is executing.
Each bin may have multiple microcode data sets available
for use. Microcode data is stored in the configuration micro-
code storage 726 and written into memory within the
MCPEs of each bin by microcode DMA 804.

Arguments DMA 806 and results DMA 808 set up trans-
fers of data from data memory 728 into one of the bins bin
0706, bin 1 708, or bin 2 710. Argument data are data stored
in a memory by a general purpose processor which requires
subsequent processing in a hardware accelerator. The argu-
ment data may be considered the input data of the kernel
code sections executed by the bins. Results data are data sent
from the hardware accelerator to the general purpose pro-
cessor as the end product of a particular kernel code sec-
tion’s execution in a bin. The functional units arguments
DMA 806 and results DMA 808 transfer this data without
additional processor intervention.

Configuration network source 810 controls the configu-
ration network. The configuration network effects the con-
figuration of the MCPEs of the bins bin 0 706, bin 1 708 and
bin 2 710, and of the level 1, level 2, and level 3 interconnect
described in FIG. 3 and FIG. 4. Configuration of the
networks enables the RTK to control the transfer of con-
figuration data, microcode data, arguments data, and results
data amongst the data memory 728, configuration memory
726, and the MCPEs of bin 0 706, bin 1 708 and bin 2 710.

In cases where there are multiple contexts, RTK 704 may
perform background loading of microcode and other data
while the bins are executing kernel code. An example of this
is discussed below in connection with FIG. 11

FIG. 9A is a process chart showing the mapping of an
exemplary single threaded process into kernel segments,
according to one embodiment. Source code 1 900 and source
code 2 960 are two exemplary single threaded processes
which may be used as the C source code 650 of the FIG. 6
process. In one embodiment, source code 1 900 may contain
overhead code 910, 914, 918, 922, 926, and 930, as well as
kernel code 912, 916, 920, 924, and 928. The identification
of the overhead code and kernel code sections may be
performed in step 652 of the FIG. 6 process. Overhead code
910, 914, 918, 922, 926, and 930 may be executed in
processor A 702 or processor B 720 of the FIG. 7a embodi-
ment. Kernel code 912, 916, 920, 924, and 928 may be
executed in bin 0 706, bin 1 708, or bin 2 710 of the FIG.
7a embodiment. The TAPR 660 of the FIG. 6 process may
create the necessary configurations and microcode for the
execution of the kernel code 912, 916, 920, 924, and 928.

FIG. 9B is a process chart showing the allocation of the
kernel segments of FIG. 9A into multiple bins. Utiling the
table 780 produced in step 664 of the FIG. 6 process, RUK
704 may load and execute the overhead code 910, 914, 918,
922, 926, and 930 and the kernel code 912, 916, 920, 924,
and 928 into an available processor or bin as needed. In the
exemplary FIG. 9B embodiment, RnK 704 loads the first
overhead code 910 into processor A 702 for execution
during time period 970. RTK 704 then loads the first kernel
code 912 into bin 0 706 for execution during time period
972.

ClibPDF - www.laslio.com

ClibPDF - www.laslio.com

ClibPDF - www.laslio.com

ClibPDF - www.laslio.com

